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The "inviscid" nature of the asymmetry is demonstrated using the example of the separating unsteady flow of an ideal incom- 
pressible fluid around a cylinder which is expanding at a constant velocity, that is, a non-steady-state analogue of steady-state 
flow around a cone at an angle of attack. An asymmetric flow structure is realized for a symmetrical positioning of the points of 
separation of the vortex sheets. This is evidence of the secondary role of viscosity, which can manifest itself through an "inverse" 
effect on the position of the points of separation. New asymmetric solutions and processes by which they arise, which are different 
from the classical bifurcation of tlae symmetric solution, are found. Together with an investigation of stability, an analysis of the 
global pattern of "self-similar" streamlines is carried out in the selection of the "realizable" solutions. The global pattern must 
correspond to the scheme adopted when constructing the theoretical model. © 1999 Elsevier Science Ltd. All rights reserved. 

The breakdown of the symmetry of separating flow around symmetric bodies (circular cones, combina- 
tions of a cone and a delta wing, a cone and a cylinder, etc.), which is well known from experiment [1], 
has been confirmed in recent years by numerical integration of the Navier-Stokes and Reynolds 
equations (for example, see [2-4]). Here,  the possibility, in the case of laminar conditions, of achieving 
agreement between the experimental and calculated results, which is as close as may be desired, does 
not give rise to any doubt. In the case of turbulent conditions, the difference between the results is 
solely due to the non-universality of the models of turbulence used in the calculations. The development 
of these models will lead to a reduction in the disagreement between the results of calculation and 
experiment. On the other hand, the numerical modelling of an asymmetric viscous flow around symmetric 
bodies, which is as accurate as may be desired with the undoubted practical importance of the results 
which are obtained (especially, the force characteristics), while not revealing the cause of the onset of 
asymmetry, does create the impression that it is exclusively of a "viscous nature". In fact, this is not so 
as, in analogous problems of unsteady separating flow around expanding symmetric bodies, asymmetry 
arises in the ideal fluid model [5-7]. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  AND BA S IC  E Q U A T I O N S  

Suppose that a plane-parallel stream of an ideal fluid, which is uniform at infinity, flows around a 
circular cylinder which is expanding from the origin of the Cartesian coordinates xy at a velocity U = 
const (Fig. 1). The velocity vector of the free stream ¥~ is directed along they  axis. 

As in [5], we shall model the separated flow around the cylinder using vortex sheets, which leave its 
surface ~ o m  the points S1 and $2, symmetrically arranged with respect to the y axis with coordinates 
zsl = Re '°t and zs2 = Re i°2, where R' = Ut and 02 = rc - 01. In turn, we shall model a vortex sheet with 
a vortex cut. 

On changing from a vortex sheet to a vortex cut, the vortieity (the remainder of the velocity component 
which is tangential to the vortex sheet) "contracts" from the sheet into its "centre", which is transformed 
into a point vortex (more briefly, into a vortex) of finite intensity F -- F(t). Two forces appear on account 
of this. First, a Zhukovskii force F1 which is proportional to the product of F and the velocity of the 
vortex relative to the flow, that is, the difference Vk - dzk/dt, where Zk = Xk + iyk is the complex coordinate 
of the kth vortex (k = 1, 2) and ¥ ,  is the velocity of the flow when z = Zk without the contribution from 
this vortex. Second, a force F2 which is due to the pressure drop which, in the case of such a transition, 
acts on the "trace" of the sheet, which is devoid of vorticity [8--12]. The pressure drop, which is 
proportional to dF/dt, depends solely on time. In the calculation of F2, this enables one to replace the 
trace of the sheet, which is unknown in advance, by a rectilinear cut which joins the point of separation 

tPrikl. Mat. Mekh. Vol. 63, No. 1, pp. 63-70, 1999. 

55 



56 A.N. Kraiko and K. S. Reyent 

I y @ 
I 

Ut 

Fig. 1. 

dr 

of the sheet with the point vortex. No forces of any kind act on the initial sheet. Hence, according to 
the recommendations in [8, 9], the equation of motion of the vortex is obtained by equating the sum 
F1 + F2 to zero. This gives the equation 

( ") 
* - z ,  dF k (1.1) dz*k 

=V~4 
dt F k dt 

Henceforth, an asterisk denotes complex conjugation, Vk + Uk + it~k is the velocity of the fluid at the 
point of location of the kth vortex (after subtracting the velocity which it induces itself), zsk is the 
coordinate of the separation point to which the kth vortex is bound and Fk(t) is its vorticity (k = 1, 2). 
We now change to the self-similar variables ~ and 7~ in accordance with the equations zk = ~R(t)  and 
Fk = 2rtR(t)UTk. In these variables, Eq. (1.1) becomes 

d;* k e -iok -;*~ a~[, = u k - i v ~  2;. k +e_iO, (1.2) 
dx 7k dx U 

where x = In t and Zsk = Re i°k. 
In order to find uk and Uk, we construct a complex potential w, taking account of the vortices, which 

are "conjugated" with respect to the cylinder, at the points R2/z*l and R2/z~, which is necessary in 
order to satisfy the slip conditions on the cylinder [5] 

R2 FI In z - z l  F2 In (1.3) 
w:-iV** z -  +URlnz+2r~i z - R 2 / z ;  2xi z - R 2 / z ;  

Here, the first three terms represent the sum of the complex potentials of the uniform free stream, 
the dipole and the source. The dipole and the source are located at the origin of the coordinate system, 
that is, at the centre of the cylinder. In accordance with what has been said previously 

- iim Ida--- v - Fk . 1, 
u , - i o , . - z , z ~ \  dz 2n i ( z - zk ) )  k = l ,  2 

The slip velocity at the point z = Re i° on the cylinder is the imaginary part of ei°(io - u). Hence, the 
condition for vortex sheets separating from two points on a cylinder, which states that the slip velocity 
is equal to zero at these points, has the form (or = VJU) 

(;1;;-l)~/ '  (;2;~-1)~/2 :2t~cos0, ,  k= i ,  2 (1.4) 
( e i ° ' - ; , ) ( e - i ° ' - ; ; )  (ei°*-;2)(e-i° '-;*2) 

From these equations, the y~ are expressed in terms of ~j = ~j + irlj (k,j  = 1, 2). We now introduce 
the four-dimensional vector X = (X1, X2, X3, X4) - (~1, aql, ~2, r12). Allowing for the fact that 
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we then write Eq. (1.2) in the form 

d~k = ~, 3yk dX,, 

~ix m=t 3X,, dx 

(E + A)dX[dx = F (1.5) 

where E is a 4 x 4 identity and the elementsAmn of the matrixA and the components Fm of the vector 
F are defined by the formula 

X t + iX2 - e i°l a'lt X3 + iX4 - e is2 OT2 
Ain + im2n = ~ ,  A3n + iA4n = 

71 ~Xn 72 3Xn 

FI +iF2 = u, +ivi -2(X, +iX2)e i°t F 3 +iF 4 = u2 +iv2 - 2 ( X  3 +iX4)e i02 
U ' U 

The self-similar solution of system (1.5) is independent of t  or x and, consequently, satisfies the "steady- 
state" equation F(X) = 0. After the solution of this equation has been found for some value of ct = 
VJU, the solutions for other a were constructed numerically by the method of continuation with respect 
to a parameter [13]. 

To investigate the stability of the self-similar solutions of system (1.5), we replaced it with the equivalent 
form 

dX/dx = (E + A)-IF 

and linearized it in the neighbourhood of the stationary point X0, by representing X in the form X = 
X0 + X ° with a small addition X ° such that I X°l ~ I X0t. We obtain 

dX°/d'c=(E + A)ol Jo X° (1.6) 

Here, J -  ~F/aXis the functional Jacobi matrix of the right-hand side of system (1.2). The zero subscript 
on the matrix and (E + A) -1 denotes that they are calculated for X = X0. 

The solution of the linear system of ordinary differential equations (1.6), as usual, is sought in the 
form 

= I . . iAie  
i=1 

where C i a r e  arbitrary constants, gi are the eigenvalues of the matrix (E + A)olJo, and X~' are the 
eigenvectors corresponding to them. 

Note that the authors of [7] only speak of the eigenvalues of the matrix J0 and make no mention of the matrix 
(E + A)~ 1. This poses the question as to whether the results in [7] concerning the investigation of stability are 
correct. This primarily concerns the simultaneous existence (for the same value of a) of the symmetric and 
asymmetric stable solutions found in [7]. 

If the eigenvalue ~i, which is a root of the characteristic equation, lies in the right half-plane 
(Re ~.i > 0), we shall call such a root an unstable root. We shall distinguish unstable solutions using the 
number of unstable roots. When there is just one eigenvalue in the right half-plane, we shall say that 
the solution is simply "unstable" and, when there are two, "doubly unstable" and so on. 

2. D I S C U S S I O N  OF THE RESULTS 

In [5-7], the transition from the symmetric solution to an asymmetric solution was the result of a 
bifurcation of the symmetric solution at a certain value of the parameter a = a..  A unique symmetric 
solution exists when a < a. .  Being stable everywhere, with the exception of a small neighbourhood of 
the point a, which we shall discuss below, it becomes unstable when a > a.. A stable asymmetric solution 
simultaneously appears. Such a situation is illustrated in Fig. 2, in which the ordinates of the vortices 
"qi are given as functions of the parameter a at the fixed points of separation 01 = 45 ° and 02 = 135 °. 
The part of the symmetric solution ab is stable while the part bc is unstable. On the curve ac 111 = ~q2 
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by virtue of symmetry. A second, asymmetric solution (curves be and bd for qa and !12, respectively), 
which is stable when ~t > or., appears at the point of bifurcation b. Stable (unstable) solutions are given 
by the solid (thin) curves in Fig. 2 and later figures. 

A more detailed numerical analysis of the system of equations (1.4)-(1.6) with the same position of 
the separation points showed that a further two asymmetric solutions exist for large values of or. They 
are indicated with the number 2 in Fig. 3. One of these is unstable and the other is doubly unstable. 
Furthermore, these solutions contradict the physical formulation of the problem and must be discarded 
for the reason explained below in the case of another position of the separation points. 

There is no bifurcation point at separation angles of the sheets of 0~ = 35* and 02 = 145". In this 
case (Fig. 4), the symmetric solution, which is denoted by the letter S, is unstable and the asymmetric 
solution, indicated with the number 1, is stable for all values of the parameter a. This solution appears 
at a certain a > Otm. For smaller values of a there is no asymmetric solution corresponding to the 
arrangement of vortex cuts which has been adopted and the symmetric solution is unstable. Consequently, 
solutions with a self-similar dependence of the parameters on time do not exist within the framework 
of the model which has been adopted with the chosen symmetric arrangement of the points where the 
sheets leave ("points of separation"). Using the well-known methods of prevention and organization 
of separation, a similar situation can also be expected in steady-state flows of a real (viscous) gas or 
liquid and the unsteady problem being considered serves as an analogue of such flows. 

As in the preceding example, there are two non-physical solutions, indicated with the number 2, when 
01 = 35* and 02 = 145". One of these solutions is unstable and the other is doubly unstable. The 
streamlines of one of them (the unstable one) for at = 12.27 are plotted in Fig. 5. In this example, the 
coordinates of the vortices are equal to ~1 = -1.96, 111 = 3.88, ~2 = 0.53 and rlz = 1.57. Henceforth, 
the trajectories of particles written in self-similar variables are called streamlines. In the initial variables, 
they are determined by the differential equation dz/dt -- V = u + iu in accordance with the definition. 
After changing to the self-similar variables ~ and ~, we obtain from this that 

d~ = u / U - %  (2.1) 
a'q u l U -  ~I 

In the determination of the velocity components u and u as functions of ~ and 1], it is convenient to 
use the complex potential w ° = w*(~) = w(Ut~, Ut, 2nuZt71.z)/(Ut) instead of the complex potential 
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Fig. 4. 
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W = w(Z, R,  FI,2) and the formula d w ° M t  = u - io .  In accordance with (1.3), this gives 

w°=- iv .  ; -  +o lnt+ lnt_l/t; , ; -1/t2)  

u - i v = - i V * *  I+ +U + ; - t ,  t - I / t ; "  --'~- ; - ; 2  t - l / t ~  (2.2) 

The streamlines are obtained as a result of the numerical integration of Eq. (2.1) with u and u from 
(2.2) for an arbitrary choice of the starting point in the plane of the self-similar variables. As applied 
to steady three-dimensional flow around a cone at an angle of attack, they give the pattern of intersections 
of the conical flow surfaces with an arbitrary plane (by virtue of the self-similarity of the solution) 
perpendicular to the axis of the cone. 

It can be seen from the streamlines, which were calculated using the method described above and 
are shown in Fig. 5, that the vortex which is "attached" through its equation of motion to the right 
separation point $1 is found in the left half-plane (the coordinate ~1 is negative), while the vortex 
"attached" to the left point $2 is in the right half-plane. This, however, does not correspond to the initial 
formulation of the problem. Actually, the streamline which is a trace of a vortex sheet and emerges 
from the point $1, winds round the right rather than the left vortex. The streamline emerging from the 
point $2 departs to infinity and is not associated with any vortex. 
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The streamline pattern for the physical solution, indicated with the number 1 in Fig. 4, is given for 
comparison in Fig. 6 for the case when ct = 7.93. In this example, gl = 0.68, rh = 1.32, g2 = - 1.48 and 
r12 = 2.82. Here, the traces of the vortex sheets are wound on "their own" vortices. 

Figure 5 shows that system (1.4)-(1.6) admits of extremely exotic solutions, the non-physical nature 
of which follows from an analysis of the global flow pattern. In such situations, the method of selecting 
solutions proposed in [5], which reduces to an analysis of the behaviour of the velocity on the cylinder 
surface at the points of separation of the sheets with the object of finding whether they are not stagnation 
points, is insufficient. 

It has been noted earlier that the bifurcation of the solution disappears (see Figs 4 and 5) when the 
angular coordinate of the separation of the vortex sheet 01 is reduced from 45 ° to 35 ° . This disappearance 
is accompanied by the appearance of yet another bifurcation point b2 at a certain intermediate value 
of 01. For instance, when 01 = 42 ° (see Fig. 7), together with the previous bifurcation point bl and the 
asymmetric solution branch dlblel, there is a second bifurcation point b2 with an asymmetric solution 
branch d2b2e 2 corresponding to it. As a stability analysis showed, the last-mentioned, as well as the 
segments ab2 and b~c of the symmetric solution, are unstable, in complete agreement with [14] (see 
§II 10). The remaining branches, bib2 and dlblel, correspond to the symmetric and asymmetric stable 
solutions, respectively. 

Note that the assertion inJ15], that the minimum value of the parameter ~t for which a symmetric 
solution exists is equal to tx0 = 1.5/sin 0, is incorrect. The branch of the symmetric solution in the case 
when 01 = 35 ° is drawn in Fig. 8 on a larger scale than in Fig. 4. The solution with the vortices located 
directly on the cylinder surface corresponds to point a. In fact, in it ct = ct0. However, the minimum 
value of et = (l, m is reached at point m when the vortices are located at a small distance from the cylinder 
surface. There are two solutions in the range am < ot < ~0. For one of them, am, the number of unstable 
roots is greater by one than for the other, inc. The situation which has been described is typical of small 
neighbourhoods of the "left end" points of the curves corresponding to both symmetric and asymmetric 
solutions. In the case of the asymmetric solutions, this occurswhen, as in the case shown in Fig. 4, they 
do not appear as the result of a bifurcation of the symmetric solution. 

In concluding, we shall dwell in more detail on what appears to us to be two rather important features. 
We begin with the "key" role of the transition from vortex sheets, that is, from tangential discontinuities, 
to vortex cuts. At first glance, "the baby is thrown out with the bath water" in such a transition. However, 
tangential discontinuities are unstable and getting rid of them removes from the initial model the 
mechanism for the onset of instability, which is always inherent in it. As a matter of fact, the above- 
mentioned operation not only does not hinder our understanding of the nature of the onset of asymmetry 
in the flows under investigation but, on the contrary, helps this. Actually, turbulent mixing zones are 
formed in place of the tangential discontinuities as a result of their instability. Such "stable-on-average" 
zones will exist both in the case of a symmetric and an asymmetric flow around a body. Hence, the above- 
mentioned instability, while affecting the "transitional" value of the parameter ot at which the symmetric 
solution becomes unstable (or vice versa), can hardly play the role of a mechanism for the onset of 
asymmetry. 

Similar considerations also hold with respect to the inverse effect of flow asymmetry which has arisen 
on the necessarily asymmetric position, associated with the separation of the boundary layer, of the 
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points of separation of the sheets, which more accurately correspond to mixing zones. Moreover, in 
principle, it is possible to develop a method to take account of the above-mentioned viscous effects. 
However, the aim of this paper was not to create a method as an alternative to direct numerical modelling 
of such flows but to demonstrate the inviscid nature of their asymmetry. In view of this, the symmetrical 
arrangement of the points of separation of the sheets is actually justified. Furthermore, the analysis 
which has been carried out under the assumption that the points of separation of the sheets are sym- 
metrically arranged is of interest not only theoretically but, also, for applications. Actually, the methods 
of boundary-layer control which are available to workers, e.g. blowing and the setting up of special shields, 
"interceptors" on the body, enable one both to delay as well as to initiate its separation. Early separation 
leads to an increase in drag while an asymmetric flow leads to the appearance of lateral forces which 
act on the flying object. Since both of these results are generally undesirable, it is natural to strive, first, 
to delay separation for as long as possible and, second, when there is no knowledge regarding the cause 
of the asymmetry, to make it symmetric. It is seen from a comparison of Figs 3 and 4 that the 
"transitional" value of the parameter Gt, which is an analogue of the angle of attack in the case of steady 
flow around conical bodies, decreases in this case. Consequently, in spite of the expectations of workers, 
undesirable lateral forces arise at lower angles of attack than in the case of earlier separation of the 
boundary layer. 

It follows from the above analysis and the preceding explanations that the behaviour of the "vortex 
nuclei" play a fundamental role in the realization of symmetric or asymmetric flow around a body. In 
the ideal fluid approximation, these are spiral-like formations on which the vortex sheet is wound an 
infinite number of times. The pressure is negative in the neighbourhood of their "centre". In the inviscid 
approximation, taking account of compressibility, which excludes negative pressures, leads to the winding 
of a sheet on a "vacuum nucleus" of finite radius. It is natural that, as a result of the effect of viscosity, 
such non-physical formations are replaced with "viscous nuclei" with a lower but positive pressure and 
with rotation of the gas or liquid particles according to a law which is close to the law of rotation for 
a solid (For example, see [16]). However, in spite of the strong effect of viscosity in the nucleus of a 
vortex, its action on the remaining practically inviscid flow is equivalent to the action of a point vortex, 
which is introduced as was done above. By the way, we recall that, in algorithms which assume the 
construction of a sheet in the ideal fluid model, only one to two of the loops are constructed, using 
special measures which "stabilize" the sheet, and the rest of it is replaced with a vortex cut as was done 
above [11]. 

All calculations were carried out using the REDUCE analytical computational system. 
We wish to thank V. I. Kopchenov and K. E. Lomkov for their participation in the initial stage of 

this research and A. G. Kulikovskii for useful remarks. 
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